Spring Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

MLA-C01 Exam Dumps - AWS Certified Machine Learning Engineer - Associate

Searching for workable clues to ace the Amazon Web Services MLA-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s MLA-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 57

A company's dataset for prediction analytics contains duplicate records, missing data, and unusually extreme high or low values. The company needs a solution to resolve the data quality issues quickly. The solution must maintain data integrity and have the LEAST operational overhead.

Which solution will meet these requirements?

A.

Use AWS Glue DataBrew to delete duplicate records, fill missing values with medians, and replace extreme values with values in a normal range.

B.

Configure an AWS Glue job to identify records with missing values and extreme measurements and delete them.

C.

Create an Amazon EMR Spark job to replace missing values with zeros and merge duplicate records.

D.

Use Amazon SageMaker Data Wrangler to delete duplicates, apply statistical modeling for missing values, and apply outlier detection algorithms.

Full Access
Question # 58

A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.

The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.

Which algorithm should the ML engineer implement to meet these requirements?

A.

Use the CatBoost algorithm to recommend the next airport destination.

B.

Use the DeepAR forecasting algorithm to recommend the next airport destination.

C.

Use the Factorization Machines algorithm to recommend the next airport destination.

D.

Use the k-means algorithm to cluster users into groups and map each group to the next airport destination.

Full Access
Question # 59

An ML engineer is developing a neural network to run on new user data. The dataset has dozens of floating-point features. The dataset is stored as CSV objects in an Amazon S3 bucket. Most objects and columns are missing at least one value. All features are relatively uniform except for a small number of extreme outliers. The ML engineer wants to use Amazon SageMaker Data Wrangler to handle missing values before passing the dataset to the neural network.

Which solution will provide the MOST complete data?

A.

Drop samples that are missing values.

B.

Impute missing values with the mean value.

C.

Impute missing values with the median value.

D.

Drop columns that are missing values.

Full Access
Question # 60

A company uses a hybrid cloud environment. A model that is deployed on premises uses data in Amazon S3 to provide customers with a live conversational engine.

The model is using sensitive data. An ML engineer needs to implement a solution to identify and remove the sensitive data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Deploy the model on Amazon SageMaker AI. Create a set of AWS Lambda functions to identify and remove the sensitive data.

B.

Deploy the model on an Amazon Elastic Container Service (Amazon ECS) cluster that uses AWS Fargate. Create an AWS Batch job to identify and remove the sensitive data.

C.

Use Amazon Macie to identify the sensitive data. Create a set of AWS Lambda functions to remove the sensitive data.

D.

Use Amazon Comprehend to identify the sensitive data. Launch Amazon EC2 instances to remove the sensitive data.

Full Access
Question # 61

A company has a large collection of chat recordings from customer interactions after a product release. An ML engineer needs to create an ML model to analyze the chat data. The ML engineer needs to determine the success of the product by reviewing customer sentiments about the product.

Which action should the ML engineer take to complete the evaluation in the LEAST amount of time?

A.

Use Amazon Rekognition to analyze sentiments of the chat conversations.

B.

Train a Naive Bayes classifier to analyze sentiments of the chat conversations.

C.

Use Amazon Comprehend to analyze sentiments of the chat conversations.

D.

Use random forests to classify sentiments of the chat conversations.

Full Access
Question # 62

A company is using Amazon SageMaker AI to develop a credit risk assessment model. During model validation, the company finds that the model achieves 82% accuracy on the validation data. However, the model achieved 99% accuracy on the training data. The company needs to address the model accuracy issue before deployment.

Which solution will meet this requirement?

A.

Add more dense layers to increase model complexity. Implement batch normalization. Use early stopping during training.

B.

Implement dropout layers. Use L1 or L2 regularization. Perform k-fold cross-validation.

C.

Use principal component analysis (PCA) to reduce the feature dimensionality. Decrease model layers. Implement cross-entropy loss functions.

D.

Augment the training dataset. Remove duplicate records from the training dataset. Implement stratified sampling.

Full Access
Go to page: