Spring Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

MLA-C01 Exam Dumps - AWS Certified Machine Learning Engineer - Associate

Searching for workable clues to ace the Amazon Web Services MLA-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s MLA-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 41

An ML engineer is setting up an Amazon SageMaker AI pipeline for an ML model. The pipeline must automatically initiate a re-training job if any data drift is detected.

How should the ML engineer set up the pipeline to meet this requirement?

A.

Use an AWS Glue crawler and an AWS Glue extract, transform, and load (ETL) job to detect data drift. Use AWS Glue triggers to automate the retraining job.

B.

Use Amazon Managed Service for Apache Flink to detect data drift. Use an AWS Lambda function to automate the re-training job.

C.

Use SageMaker Model Monitor to detect data drift. Use an AWS Lambda function to automate the re-training job.

D.

Use Amazon Quick Suite (previously known as Amazon QuickSight) anomaly detection to detect data drift. Use an AWS Step Functions workflow to automate the re-training job.

Full Access
Question # 42

An ML engineer needs to organize a large set of text documents into topics. The ML engineer will not know what the topics are in advance. The ML engineer wants to use built-in algorithms or pre-trained models available through Amazon SageMaker AI to process the documents.

Which solution will meet these requirements?

A.

Use the BlazingText algorithm to identify the relevant text and to create a set of topics based on the documents.

B.

Use the Sequence-to-Sequence algorithm to summarize the text and to create a set of topics based on the documents.

C.

Use the Object2Vec algorithm to create embeddings and to create a set of topics based on the embeddings.

D.

Use the Latent Dirichlet Allocation (LDA) algorithm to process the documents and to create a set of topics based on the documents.

Full Access
Question # 43

An ML engineer is using Amazon SageMaker to train a deep learning model that requires distributed training. After some training attempts, the ML engineer observes that the instances are not performing as expected. The ML engineer identifies communication overhead between the training instances.

What should the ML engineer do to MINIMIZE the communication overhead between the instances?

A.

Place the instances in the same VPC subnet. Store the data in a different AWS Region from where the instances are deployed.

B.

Place the instances in the same VPC subnet but in different Availability Zones. Store the data in a different AWS Region from where the instances are deployed.

C.

Place the instances in the same VPC subnet. Store the data in the same AWS Region and Availability Zone where the instances are deployed.

D.

Place the instances in the same VPC subnet. Store the data in the same AWS Region but in a different Availability Zone from where the instances are deployed.

Full Access
Question # 44

A company has a conversational AI assistant that sends requests through Amazon Bedrock to an Anthropic Claude large language model (LLM). Users report that when they ask similar questions multiple times, they sometimes receive different answers. An ML engineer needs to improve the responses to be more consistent and less random.

Which solution will meet these requirements?

A.

Increase the temperature parameter and the top_k parameter.

B.

Increase the temperature parameter. Decrease the top_k parameter.

C.

Decrease the temperature parameter. Increase the top_k parameter.

D.

Decrease the temperature parameter and the top_k parameter.

Full Access
Question # 45

Case Study

A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a

central model registry, model deployment, and model monitoring.

The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.

The company must implement a manual approval-based workflow to ensure that only approved models can be deployed to production endpoints.

Which solution will meet this requirement?

A.

Use SageMaker Experiments to facilitate the approval process during model registration.

B.

Use SageMaker ML Lineage Tracking on the central model registry. Create tracking entities for the approval process.

C.

Use SageMaker Model Monitor to evaluate the performance of the model and to manage the approval.

D.

Use SageMaker Pipelines. When a model version is registered, use the AWS SDK to change the approval status to "Approved."

Full Access
Question # 46

A company wants to build an anomaly detection ML model. The model will use large-scale tabular data that is stored in an Amazon S3 bucket. The company does not have expertise in Python, Spark, or other languages for ML.

An ML engineer needs to transform and prepare the data for ML model training.

Which solution will meet these requirements?

A.

Prepare the data by using Amazon EMR Serverless applications that host Amazon SageMaker Studio notebooks.

B.

Prepare the data by using the Amazon SageMaker Data Wrangler visual interface in Amazon SageMaker Canvas.

C.

Run SQL queries from a JupyterLab space in Amazon SageMaker Studio. Process the data further by using pandas DataFrames.

D.

Prepare the data by using a JupyterLab notebook in Amazon SageMaker Studio.

Full Access
Question # 47

A company is developing ML models by using PyTorch and TensorFlow estimators with Amazon SageMaker AI. An ML engineer configures the SageMaker AI estimator and now needs to initiate a training job that uses a training dataset.

Which SageMaker AI SDK method can initiate the training job?

A.

fit method

B.

create_model method

C.

deploy method

D.

predict method

Full Access
Question # 48

Case study

An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.

The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.

Which AWS service or feature can aggregate the data from the various data sources?

A.

Amazon EMR Spark jobs

B.

Amazon Kinesis Data Streams

C.

Amazon DynamoDB

D.

AWS Lake Formation

Full Access
Go to page: