Searching for workable clues to ace the Amazon Web Services MLA-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s MLA-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps
A company is building an enterprise AI platform. The company must catalog models for production, manage model versions, and associate metadata such as training metrics with models. The company needs to eliminate the burden of managing different versions of models.
Which solution will meet these requirements?
A company has a team of data scientists who use Amazon SageMaker notebook instances to test ML models. When the data scientists need new permissions, the company attaches the permissions to each individual role that was created during the creation of the SageMaker notebook instance.
The company needs to centralize management of the team's permissions.
Which solution will meet this requirement?
A company uses Amazon SageMaker AI to create ML models. The data scientists need fine-grained control of ML workflows, DAG visualization, experiment history, and model governance for auditing and compliance.
Which solution will meet these requirements?
An ML engineer needs to use Amazon SageMaker Feature Store to create and manage features to train a model.
Select and order the steps from the following list to create and use the features in Feature Store. Each step should be selected one time. (Select and order three.)
• Access the store to build datasets for training.
• Create a feature group.
• Ingest the records.
A company is uploading thousands of PDF policy documents into Amazon S3 and Amazon Bedrock Knowledge Bases. Each document contains structured sections. Users often search for a small section but need the full section context. The company wants accurate section-level search with automatic context retrieval and minimal custom coding.
Which chunking strategy meets these requirements?
A company's ML engineer is creating a classification model. The ML engineer explores the dataset and notices a column named day_of_week. The column contains the following values: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.
Which technique should the ML engineer use to convert this column’s data to binary values?
A company is building a near real-time data analytics application to detect anomalies and failures for industrial equipment. The company has thousands of IoT sensors that send data every 60 seconds. When new versions of the application are released, the company wants to ensure that application code bugs do not prevent the application from running.
Which solution will meet these requirements?
An ML engineer is analyzing a classification dataset before training a model in Amazon SageMaker AI. The ML engineer suspects that the dataset has a significant imbalance between class labels that could lead to biased model predictions. To confirm class imbalance, the ML engineer needs to select an appropriate pre-training bias metric.
Which metric will meet this requirement?