Spring Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

MLA-C01 Exam Dumps - AWS Certified Machine Learning Engineer - Associate

Searching for workable clues to ace the Amazon Web Services MLA-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s MLA-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 25

A company wants to use large language models (LLMs) supported by Amazon Bedrock to develop a chat interface for internal technical documentation.

The documentation consists of dozens of text files totaling several megabytes and is updated frequently.

Which solution will meet these requirements MOST cost-effectively?

A.

Train a new LLM in Amazon Bedrock using the documentation.

B.

Use Amazon Bedrock guardrails to integrate documentation.

C.

Fine-tune an LLM in Amazon Bedrock with the documentation.

D.

Upload the documentation to an Amazon Bedrock knowledge base and use it as context during inference.

Full Access
Question # 26

An ML engineer wants to run a training job on Amazon SageMaker AI by using multiple GPUs. The training dataset is stored in Apache Parquet format.

The Parquet files are too large to fit into the memory of the SageMaker AI training instances.

Which solution will fix the memory problem?

A.

Attach an Amazon EBS Provisioned IOPS SSD volume and store the files on the EBS volume.

B.

Repartition the Parquet files by using Apache Spark on Amazon EMR and use the repartitioned files for training.

C.

Change to memory-optimized instance types with sufficient memory.

D.

Use SageMaker distributed data parallelism (SMDDP) to split memory usage.

Full Access
Question # 27

A travel company has trained hundreds of geographic data models to answer customer questions by using Amazon SageMaker AI. Each model uses its own inferencing endpoint, which has become an operational challenge for the company.

The company wants to consolidate the models' inferencing endpoints to reduce operational overhead.

Which solution will meet these requirements?

A.

Use SageMaker AI multi-model endpoints. Deploy a single endpoint.

B.

Use SageMaker AI multi-container endpoints. Deploy a single endpoint.

C.

Use Amazon SageMaker Studio. Deploy a single-model endpoint.

D.

Use inference pipelines in SageMaker AI to combine tasks from hundreds of models to 15 models.

Full Access
Question # 28

A company wants to predict the success of advertising campaigns by considering the color scheme of each advertisement. An ML engineer is preparing data for a neural network model. The dataset includes color information as categorical data.

Which technique for feature engineering should the ML engineer use for the model?

A.

Apply label encoding to the color categories. Automatically assign each color a unique integer.

B.

Implement padding to ensure that all color feature vectors have the same length.

C.

Perform dimensionality reduction on the color categories.

D.

One-hot encode the color categories to transform the color scheme feature into a binary matrix.

Full Access
Question # 29

A company needs to give its ML engineers appropriate access to training data. The ML engineers must access training data from only their own business group. The ML engineers must not be allowed to access training data from other business groups.

The company uses a single AWS account and stores all the training data in Amazon S3 buckets. All ML model training occurs in Amazon SageMaker.

Which solution will provide the ML engineers with the appropriate access?

A.

Enable S3 bucket versioning.

B.

Configure S3 Object Lock settings for each user.

C.

Add cross-origin resource sharing (CORS) policies to the S3 buckets.

D.

Create IAM policies. Attach the policies to IAM users or IAM roles.

Full Access
Question # 30

A company is creating an application that will recommend products for customers to purchase. The application will make API calls to Amazon Q Business. The company must ensure that responses from Amazon Q Business do not include the name of the company's main competitor.

Which solution will meet this requirement?

A.

Configure the competitor's name as a blocked phrase in Amazon Q Business.

B.

Configure an Amazon Q Business retriever to exclude the competitor's name.

C.

Configure an Amazon Kendra retriever for Amazon Q Business to build indexes that exclude the competitor's name.

D.

Configure document attribute boosting in Amazon Q Business to deprioritize the competitor's name.

Full Access
Question # 31

An ML engineer is using an Amazon SageMaker Studio notebook to train a neural network by creating an estimator. The estimator runs a Python training script that uses Distributed Data Parallel (DDP) on a single instance that has more than one GPU.

The ML engineer discovers that the training script is underutilizing GPU resources. The ML engineer must identify the point in the training script where resource utilization can be optimized.

Which solution will meet this requirement?

A.

Use Amazon CloudWatch metrics to create a report that describes GPU utilization over time.

B.

Add SageMaker Profiler annotations to the training script. Run the script and generate a report from the results.

C.

Use AWS CloudTrail to create a report that describes GPU utilization and GPU memory utilization over time.

D.

Create a default monitor in Amazon SageMaker Model Monitor and suggest a baseline. Generate a report based on the constraints and statistics the monitor generates.

Full Access
Question # 32

A company has an application that uses different APIs to generate embeddings for input text. The company needs to implement a solution to automatically rotate the API tokens every 3 months.

Which solution will meet this requirement?

A.

Store the tokens in AWS Secrets Manager. Create an AWS Lambda function to perform the rotation.

B.

Store the tokens in AWS Systems Manager Parameter Store. Create an AWS Lambda function to perform the rotation.

C.

Store the tokens in AWS Key Management Service (AWS KMS). Use an AWS managed key to perform the rotation.

D.

Store the tokens in AWS Key Management Service (AWS KMS). Use an AWS owned key to perform the rotation.

Full Access
Go to page: