Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

MLS-C01 Exam Dumps - AWS Certified Machine Learning - Specialty

Go to page:
Question # 49

A large consumer goods manufacturer has the following products on sale:

• 34 different toothpaste variants

• 48 different toothbrush variants

• 43 different mouthwash variants

The entire sales history of all these products is available in Amazon S3. Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products. The company wants to predict the demand for a new product that will soon be launched.

Which solution should a machine learning specialist apply?

A.

Train a custom ARIMA model to forecast demand for the new product.

B.

Train an Amazon SageMaker DeepAR algorithm to forecast demand for the new product.

C.

Train an Amazon SageMaker k-means clustering algorithm to forecast demand for the new product.

D.

Train a custom XGBoost model to forecast demand for the new product.

Full Access
Question # 50

A data scientist is building a new model for an ecommerce company. The model will predict how many minutes it will take to deliver a package.

During model training, the data scientist needs to evaluate model performance.

Which metrics should the data scientist use to meet this requirement? (Select TWO.)

A.

InferenceLatency

B.

Mean squared error (MSE)

C.

Root mean squared error (RMSE)

D.

Precision

E.

Accuracy

Full Access
Question # 51

The displayed graph is from a foresting model for testing a time series.

Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?

A.

The model predicts both the trend and the seasonality well.

B.

The model predicts the trend well, but not the seasonality.

C.

The model predicts the seasonality well, but not the trend.

D.

The model does not predict the trend or the seasonality well.

Full Access
Question # 52

A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.

Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)

A.

AWS CloudTrail

B.

AWS Health

C.

AWS Trusted Advisor

D.

Amazon CloudWatch

E.

AWS Config

Full Access
Question # 53

A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.

What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear

regression model?

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Full Access
Question # 54

A company uses camera images of the tops of items displayed on store shelves to determine which items

were removed and which ones still remain. After several hours of data labeling, the company has a total of

1,000 hand-labeled images covering 10 distinct items. The training results were poor.

Which machine learning approach fulfills the company’s long-term needs?

A.

Convert the images to grayscale and retrain the model

B.

Reduce the number of distinct items from 10 to 2, build the model, and iterate

C.

Attach different colored labels to each item, take the images again, and build the model

D.

Augment training data for each item using image variants like inversions and translations, build the model, and iterate.

Full Access
Question # 55

A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

A.

Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.

B.

Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model.

C.

Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.

D.

Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.

Full Access
Question # 56

An interactive online dictionary wants to add a widget that displays words used in similar contexts. A Machine Learning Specialist is asked to provide word features for the downstream nearest neighbor model powering the widget.

What should the Specialist do to meet these requirements?

A.

Create one-hot word encoding vectors.

B.

Produce a set of synonyms for every word using Amazon Mechanical Turk.

C.

Create word embedding factors that store edit distance with every other word.

D.

Download word embedding’s pre-trained on a large corpus.

Full Access
Go to page: