A Machine Learning Specialist deployed a model that provides product recommendations on a company's website Initially, the model was performing very well and resulted in customers buying more products on average However within the past few months the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago
Which method should the Specialist try to improve model performance?
A Machine Learning Specialist needs to create a data repository to hold a large amount of time-based training data for a new model. In the source system, new files are added every hour Throughout a single 24-hour period, the volume of hourly updates will change significantly. The Specialist always wants to train on the last 24 hours of the data
Which type of data repository is the MOST cost-effective solution?
A Data Scientist needs to migrate an existing on-premises ETL process to the cloud The current process runs at regular time intervals and uses PySpark to combine and format multiple large data sources into a single consolidated output for downstream processing
The Data Scientist has been given the following requirements for the cloud solution
* Combine multiple data sources
* Reuse existing PySpark logic
* Run the solution on the existing schedule
* Minimize the number of servers that will need to be managed
Which architecture should the Data Scientist use to build this solution?
A machine learning (ML) engineer is creating a binary classification model. The ML engineer will use the model in a highly sensitive environment.
There is no cost associated with missing a positive label. However, the cost of making a false positive inference is extremely high.
What is the most important metric to optimize the model for in this scenario?
A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not
Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?
A data scientist obtains a tabular dataset that contains 150 correlated features with different ranges to build a regression model. The data scientist needs to achieve more efficient model training by implementing a solution that minimizes impact on the model's performance. The data scientist decides to perform a principal component analysis (PCA) preprocessing step to reduce the number of features to a smaller set of independent features before the data scientist uses the new features in the regression model.
Which preprocessing step will meet these requirements?
A company wants to create an artificial intelligence (Al) yoga instructor that can lead large classes of students. The company needs to create a feature that can accurately count the number of students who are in a class. The company also needs a feature that can differentiate students who are performing a yoga stretch correctly from students who are performing a stretch incorrectly.
...etermine whether students are performing a stretch correctly, the solution needs to measure the location and angle of each student's arms and legs A data scientist must use Amazon SageMaker to ...ss video footage of a yoga class by extracting image frames and applying computer vision models.
Which combination of models will meet these requirements with the LEAST effort? (Select TWO.)
A Machine Learning Specialist is required to build a supervised image-recognition model to identify a cat. The ML Specialist performs some tests and records the following results for a neural network-based image classifier:
Total number of images available = 1,000 Test set images = 100 (constant test set)
The ML Specialist notices that, in over 75% of the misclassified images, the cats were held upside down by their owners.
Which techniques can be used by the ML Specialist to improve this specific test error?