Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Exam Dumps - Databricks Certified Associate Developer for Apache Spark 3.5 – Python

Searching for workable clues to ace the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 33

What is the behavior for function date_sub(start, days) if a negative value is passed into the days parameter?

A.

The same start date will be returned

B.

An error message of an invalid parameter will be returned

C.

The number of days specified will be added to the start date

D.

The number of days specified will be removed from the start date

Full Access
Question # 34

A developer notices that all the post-shuffle partitions in a dataset are smaller than the value set for spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold.

Which type of join will Adaptive Query Execution (AQE) choose in this case?

A.

A Cartesian join

B.

A shuffled hash join

C.

A broadcast nested loop join

D.

A sort-merge join

Full Access
Question # 35

42 of 55.

A developer needs to write the output of a complex chain of Spark transformations to a Parquet table called events.liveLatest.

Consumers of this table query it frequently with filters on both year and month of the event_ts column (a timestamp).

The current code:

from pyspark.sql import functions as F

final = df.withColumn("event_year", F.year("event_ts")) \

.withColumn("event_month", F.month("event_ts")) \

.bucketBy(42, ["event_year", "event_month"]) \

.saveAsTable("events.liveLatest")

However, consumers report poor query performance.

Which change will enable efficient querying by year and month?

A.

Replace .bucketBy() with .partitionBy("event_year", "event_month")

B.

Change the bucket count (42) to a lower number

C.

Add .sortBy() after .bucketBy()

D.

Replace .bucketBy() with .partitionBy("event_year") only

Full Access
Question # 36

22 of 55.

A Spark application needs to read multiple Parquet files from a directory where the files have differing but compatible schemas.

The data engineer wants to create a DataFrame that includes all columns from all files.

Which code should the data engineer use to read the Parquet files and include all columns using Apache Spark?

A.

spark.read.parquet("/data/parquet/")

B.

spark.read.option("mergeSchema", True).parquet("/data/parquet/")

C.

spark.read.format("parquet").option("inferSchema", "true").load("/data/parquet/")

D.

spark.read.parquet("/data/parquet/").option("mergeAllCols", True)

Full Access
Question # 37

A Spark engineer is troubleshooting a Spark application that has been encountering out-of-memory errors during execution. By reviewing the Spark driver logs, the engineer notices multiple "GC overhead limit exceeded" messages.

Which action should the engineer take to resolve this issue?

A.

Optimize the data processing logic by repartitioning the DataFrame.

B.

Modify the Spark configuration to disable garbage collection

C.

Increase the memory allocated to the Spark Driver.

D.

Cache large DataFrames to persist them in memory.

Full Access
Question # 38

17 of 55.

A data engineer has noticed that upgrading the Spark version in their applications from Spark 3.0 to Spark 3.5 has improved the runtime of some scheduled Spark applications.

Looking further, the data engineer realizes that Adaptive Query Execution (AQE) is now enabled.

Which operation should AQE be implementing to automatically improve the Spark application performance?

A.

Dynamically switching join strategies

B.

Collecting persistent table statistics and storing them in the metastore for future use

C.

Improving the performance of single-stage Spark jobs

D.

Optimizing the layout of Delta files on disk

Full Access
Question # 39

Given the code:

df = spark.read.csv("large_dataset.csv")

filtered_df = df.filter(col("error_column").contains("error"))

mapped_df = filtered_df.select(split(col("timestamp"), " ").getItem(0).alias("date"), lit(1).alias("count"))

reduced_df = mapped_df.groupBy("date").sum("count")

reduced_df.count()

reduced_df.show()

At which point will Spark actually begin processing the data?

A.

When the filter transformation is applied

B.

When the count action is applied

C.

When the groupBy transformation is applied

D.

When the show action is applied

Full Access
Question # 40

A data engineer is reviewing a Spark application that applies several transformations to a DataFrame but notices that the job does not start executing immediately.

Which two characteristics of Apache Spark's execution model explain this behavior?

Choose 2 answers:

A.

The Spark engine requires manual intervention to start executing transformations.

B.

Only actions trigger the execution of the transformation pipeline.

C.

Transformations are executed immediately to build the lineage graph.

D.

The Spark engine optimizes the execution plan during the transformations, causing delays.

E.

Transformations are evaluated lazily.

Full Access
Go to page: