Searching for workable clues to ace the Google Professional-Data-Engineer Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s Professional-Data-Engineer PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps
When using Cloud Dataproc clusters, you can access the YARN web interface by configuring a browser to connect through a ____ proxy.
Which of the following are examples of hyperparameters? (Select 2 answers.)
If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?
Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?
You are building an application to share financial market data with consumers, who will receive data feeds. Data is collected from the markets in real time. Consumers will receive the data in the following ways:
Real-time event stream
ANSI SQL access to real-time stream and historical data
Batch historical exports
Which solution should you use?
Government regulations in your industry mandate that you have to maintain an auditable record of access to certain types of datA. Assuming that all expiring logs will be archived correctly, where should you store data that is subject to that mandate?
You are designing BigQuery tables for large volumes of clickstream event data. Your data analyst team will most frequently query by specific event date ranges and filter by the user ID UUID. You want to optimize table structure for query cost and performance. What should you do?
You work on a regression problem in a natural language processing domain, and you have 100M labeled exmaples in your dataset. You have randomly shuffled your data and split your dataset into train and test samples (in a 90/10 ratio). After you trained the neural network and evaluatedyour model on a test set, you discover that the root-mean-squared error (RMSE) of your model is twice as high on the train set as on the test set. How should you improve the performance of your model?