Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

Databricks-Certified-Professional-Data-Engineer Exam Dumps - Databricks Certified Data Engineer Professional Exam

Go to page:
Question # 25

A data engineer has created a new cluster using shared access mode with default configurations. The data engineer needs to allow the development team access to view the driver logs if needed.

What are the minimal cluster permissions that allow the development team to accomplish this?

A.

CAN ATTACH TO

B.

CAN MANAGE

C.

CAN VIEW

D.

CAN RESTART

Full Access
Question # 26

The data science team has created and logged a production model using MLflow. The following code correctly imports and applies the production model to output the predictions as a new DataFrame named preds with the schema "customer_id LONG, predictions DOUBLE, date DATE".

The data science team would like predictions saved to a Delta Lake table with the ability to compare all predictions across time. Churn predictions will be made at most once per day.

Which code block accomplishes this task while minimizing potential compute costs?

A.

preds.write.mode("append").saveAsTable("churn_preds")

B.

preds.write.format("delta").save("/preds/churn_preds")

C)

D)

E)

C.

Option A

D.

Option B

E.

Option C

F.

Option D

G.

Option E

Full Access
Question # 27

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Events are recorded once per minute per device.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

A.

to_interval("event_time", "5 minutes").alias("time")

B.

window("event_time", "5 minutes").alias("time")

C.

"event_time"

D.

window("event_time", "10 minutes").alias("time")

E.

lag("event_time", "10 minutes").alias("time")

Full Access
Question # 28

A CHECK constraint has been successfully added to the Delta table named activity_details using the following logic:

A batch job is attempting to insert new records to the table, including a record where latitude = 45.50 and longitude = 212.67.

Which statement describes the outcome of this batch insert?

A.

The write will fail when the violating record is reached; any records previously processed will be recorded to the target table.

B.

The write will fail completely because of the constraint violation and no records will be inserted into the target table.

C.

The write will insert all records except those that violate the table constraints; the violating records will be recorded to a quarantine table.

D.

The write will include all records in the target table; any violations will be indicated in the boolean column named valid_coordinates.

E.

The write will insert all records except those that violate the table constraints; the violating records will be reported in a warning log.

Full Access
Question # 29

Which statement describes the default execution mode for Databricks Auto Loader?

A.

New files are identified by listing the input directory; new files are incrementally and idempotently loaded into the target Delta Lake table.

B.

Cloud vendor-specific queue storage and notification services are configured to track newly arriving files; new files are incrementally and impotently into the target Delta Lake table.

C.

Webhook trigger Databricks job to run anytime new data arrives in a source directory; new data automatically merged into target tables using rules inferred from the data.

D.

New files are identified by listing the input directory; the target table is materialized by directory querying all valid files in the source directory.

Full Access
Question # 30

A production workload incrementally applies updates from an external Change Data Capture feed to a Delta Lake table as an always-on Structured Stream job. When data was initially migrated for this table, OPTIMIZE was executed and most data files were resized to 1 GB. Auto Optimize and Auto Compaction were both turned on for the streaming production job. Recent review of data files shows that most data files are under 64 MB, although each partition in the table contains at least 1 GB of data and the total table size is over 10 TB.

Which of the following likely explains these smaller file sizes?

A.

Databricks has autotuned to a smaller target file size to reduce duration of MERGE operations

B.

Z-order indices calculated on the table are preventing file compaction

C Bloom filler indices calculated on the table are preventing file compaction

C.

Databricks has autotuned to a smaller target file size based on the overall size of data in the table

D.

Databricks has autotuned to a smaller target file size based on the amount of data in each partition

Full Access
Question # 31

What is true for Delta Lake?

A.

Views in the Lakehouse maintain a valid cache of the most recent versions of source tables at all times.

B.

Delta Lake automatically collects statistics on the first 32 columns of each table, which are leveraged in data skipping based on query filters.

C.

Z-ORDER can only be applied to numeric values stored in Delta Lake tables.

D.

Primary and foreign key constraints can be leveraged to ensure duplicate values are never entered into a dimension table.

Full Access
Question # 32

A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.

Which command should the data engineer enter in a web terminal configured with the Databricks CLI?

A.

Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command

B.

Stop the existing pipeline; use the returned settings in a reset command

C.

Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git

D.

Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline

Full Access
Go to page: