Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

Databricks-Certified-Professional-Data-Engineer Exam Dumps - Databricks Certified Data Engineer Professional Exam

Go to page:
Question # 9

A junior data engineer is migrating a workload from a relational database system to the Databricks Lakehouse. The source system uses a star schema, leveraging foreign key constrains and multi-table inserts to validate records on write.

Which consideration will impact the decisions made by the engineer while migrating this workload?

A.

All Delta Lake transactions are ACID compliance against a single table, and Databricks does not enforce foreign key constraints.

B.

Databricks only allows foreign key constraints on hashed identifiers, which avoid collisions in highly-parallel writes.

C.

Foreign keys must reference a primary key field; multi-table inserts must leverage Delta Lake's upsert functionality.

D.

Committing to multiple tables simultaneously requires taking out multiple table locks and can lead to a state of deadlock.

Full Access
Question # 10

The view updates represents an incremental batch of all newly ingested data to be inserted or updated in the customers table.

The following logic is used to process these records.

MERGE INTO customers

USING (

SELECT updates.customer_id as merge_ey, updates .*

FROM updates

UNION ALL

SELECT NULL as merge_key, updates .*

FROM updates JOIN customers

ON updates.customer_id = customers.customer_id

WHERE customers.current = true AND updates.address <</b>> customers.address

) staged_updates

ON customers.customer_id = mergekey

WHEN MATCHED AND customers. current = true AND customers.address <</b>> staged_updates.address THEN

UPDATE SET current = false, end_date = staged_updates.effective_date

WHEN NOT MATCHED THEN

INSERT (customer_id, address, current, effective_date, end_date)

VALUES (staged_updates.customer_id, staged_updates.address, true, staged_updates.effective_date, null)

Which statement describes this implementation?

    The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.

A.

The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.

B.

The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.

C.

The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.

Full Access
Question # 11

A small company based in the United States has recently contracted a consulting firm in India to implement several new data engineering pipelines to power artificial intelligence applications. All the company's data is stored in regional cloud storage in the United States.

The workspace administrator at the company is uncertain about where the Databricks workspace used by the contractors should be deployed.

Assuming that all data governance considerations are accounted for, which statement accurately informs this decision?

A.

Databricks runs HDFS on cloud volume storage; as such, cloud virtual machines must be deployed in the region where the data is stored.

B.

Databricks workspaces do not rely on any regional infrastructure; as such, the decision should be made based upon what is most convenient for the workspace administrator.

C.

Cross-region reads and writes can incur significant costs and latency; whenever possible, compute should be deployed in the same region the data is stored.

D.

Databricks leverages user workstations as the driver during interactive development; as such, users should always use a workspace deployed in a region they are physically near.

E.

Databricks notebooks send all executable code from the user's browser to virtual machines over the open internet; whenever possible, choosing a workspace region near the end users is the most secure.

Full Access
Question # 12

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source table has been de-duplicated and validated, which statement describes what will occur when this code is executed?

A.

The silver_customer_sales table will be overwritten by aggregated values calculated from all records in the gold_customer_lifetime_sales_summary table as a batch job.

B.

A batch job will update the gold_customer_lifetime_sales_summary table, replacing only those rows that have different values than the current version of the table, using customer_id as the primary key.

C.

The gold_customer_lifetime_sales_summary table will be overwritten by aggregated values calculated from all records in the silver_customer_sales table as a batch job.

D.

An incremental job will leverage running information in the state store to update aggregate values in the gold_customer_lifetime_sales_summary table.

E.

An incremental job will detect if new rows have been written to the silver_customer_sales table; if new rows are detected, all aggregates will be recalculated and used to overwrite the gold_customer_lifetime_sales_summary table.

Full Access
Question # 13

A data engineer, User A, has promoted a new pipeline to production by using the REST API to programmatically create several jobs. A DevOps engineer, User B, has configured an external orchestration tool to trigger job runs through the REST API. Both users authorized the REST API calls using their personal access tokens.

Which statement describes the contents of the workspace audit logs concerning these events?

A.

Because the REST API was used for job creation and triggering runs, a Service Principal will be automatically used to identity these events.

B.

Because User B last configured the jobs, their identity will be associated with both the job creation events and the job run events.

C.

Because these events are managed separately, User A will have their identity associated with the job creation events and User B will have their identity associated with the job run events.

D.

Because the REST API was used for job creation and triggering runs, user identity will not be captured in the audit logs.

E.

Because User A created the jobs, their identity will be associated with both the job creation events and the job run events.

Full Access
Question # 14

A junior data engineer on your team has implemented the following code block.

The view new_events contains a batch of records with the same schema as the events Delta table. The event_id field serves as a unique key for this table.

When this query is executed, what will happen with new records that have the same event_id as an existing record?

A.

They are merged.

B.

They are ignored.

C.

They are updated.

D.

They are inserted.

E.

They are deleted.

Full Access
Question # 15

Which of the following is true of Delta Lake and the Lakehouse?

A.

Because Parquet compresses data row by row. strings will only be compressed when a character is repeated multiple times.

B.

Delta Lake automatically collects statistics on the first 32 columns of each table which are leveraged in data skipping based on query filters.

C.

Views in the Lakehouse maintain a valid cache of the most recent versions of source tables at all times.

D.

Primary and foreign key constraints can be leveraged to ensure duplicate values are never entered into a dimension table.

E.

Z-order can only be applied to numeric values stored in Delta Lake tables

Full Access
Question # 16

The data engineer team is configuring environment for development testing, and production before beginning migration on a new data pipeline. The team requires extensive testing on both the code and data resulting from code execution, and the team want to develop and test against similar production data as possible.

A junior data engineer suggests that production data can be mounted to the development testing environments, allowing pre production code to execute against production data. Because all users have

Admin privileges in the development environment, the junior data engineer has offered to configure permissions and mount this data for the team.

Which statement captures best practices for this situation?

A.

Because access to production data will always be verified using passthrough credentials it is safe to mount data to any Databricks development environment.

B.

All developer, testing and production code and data should exist in a single unified workspace; creating separate environments for testing and development further reduces risks.

C.

In environments where interactive code will be executed, production data should only be accessible with read permissions; creating isolated databases for each environment further reduces risks.

D.

Because delta Lake versions all data and supports time travel, it is not possible for user error or malicious actors to permanently delete production data, as such it is generally safe to mount production data anywhere.

Full Access
Go to page: