Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

ANS-C01 Exam Dumps - Amazon AWS Certified Advanced Networking - Specialty

Go to page:
Question # 4

A network engineer is working on a private DNS design to integrate AWS workloads and on-premises resources. The AWS deployment consists of five VPCs in the eu-west-1 Region that connect to the on-premises network over AWS Direct Connect. The VPCs communicate with each other by using a transit gateway. Each VPC is associated with a private hosted zone that uses the aws.example.internal domain. The network engineer creates an Amazon Route 53 Resolver outbound endpoint in a shared services VPC and attaches the shared services VPC to the transit gateway.

The network engineer is implementing a solution for DNS resolution. Queries for hostnames that end with aws.example.internal must use the private hosted zone. Queries for hostnames that end with all other domains must be forwarded to a private on-premises DNS resolver.

Which solution will meet these requirements?

A.

Add a forwarding rule for”””that targets the on-premises server's DNS IP address. Add a system rule for aws.example.internal that targets Route 53 Resolver.

B.

Add a forwarding rule for aws example.internal that targets Route 53 Resolver. Add asystem rule for V that targets the Route 53 Resolver outbound endpoint.

C.

Add a forwarding rule for”””that targets the Route 53 Resolver outbound endpoint.

D.

Add a forwarding rule for"." that targets the Route 53 Resolver outbound endpoint.

Full Access
Question # 5

An international company wants to implement a multi-site hybrid infrastructure. The company wants to deploy its cloud computing resources on AWS in the us-east-1 Region and in the eu-west-2 Region, and in on-premises data centers in the United States (US) and in the United Kingdom (UK). The data centers are connected to each other by a private WAN connection. IP routing information is exchanged dynamically through BGP. The company wants to have two AWS Direct Connect connections, one each in the US and the UK.

The company expects to have 15 VPCs in each Region with CIDR blocks that do not overlap with each other or with CIDR blocks of the on-premises environment. The VPC CIDR blocks are planned so that the prefix aggregation can be performed both on a Regional level and across the entire AWS environment. The company will deploy a transit gateway in each Region to connect the VPCs. A network engineer plans to use a Direct Connect gateway in each Region. A transit VIF will attach the Direct Connect gateway in each Region to the transit gateway in that Region. The transit gateways will be peered with each other.

The network engineer wants to ensure that traffic follows the shortest geographical path from source to destination. Traffic between the on-premises data centers and AWS must travel across a local Direct Connect connection. Traffic between the US data center and eu-west-2 and traffic between the UK data center and us-east-1 must use the private WAN connection to reach the Direct Connect connection to the appropriate Region when the Direct Connect connection is available. The network must be resilient to failures in either the private WAN connection or with the Direct Connect connections. The network also must reroute traffic automatically in the event of any failure.

How should the network engineer configure the transit VIF associations on the Direct Connect gateways to meet these requirements?

A.

Advertise only the aggregate route for the company's entire AWS environment.

B.

Advertise VPC-specific CIDR prefixes from only the local Region. Additionally, advertise the aggregate route for the company’s entire AWS environment.

C.

Advertise all the specific VPC CIDR blocks from both Regions.

D.

Advertise both Regional aggregate prefixes. Configure custom BGP communities on the routes advertised toward the data center.

Full Access
Question # 6

A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission.

How should a network engineer configure the AWS resources to meet these requirements?

A.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

B.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

C.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

D.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

Full Access
Question # 7

A company has an AWS account with four VPCs in the us-east-1 Region. The VPCs consist of a development VPC and three production VPCs that host various workloads.

The company has extended its on-premises data center to AWS with AWS Direct Connect by using a Direct Connect gateway. The company now wants to establish connectivity to its production VPCs and development VPC from on premises. The production VPCs are allowed to route data to each other. However, the development VPC must be isolated from the production VPCs. No data can flow between the development VPC and the production VPCs.

In preparation to implement this solution, a network engineer creates a transit gateway with a single transit gateway route table. Default route table association and default route table propagation are turned off. The network engineer attaches the production VPCs. the development VPC. and the Direct Connect gateway to the transit gateway. For each VPC route table, the network engineer adds a route to 0.0.0.0/0 with the transit gateway as the next destination.

Which combination of steps should the network engineer take next to complete this solution? (Select THREE.)

A.

Associate the production VPC attachments with the existing transit gateway route table. Propagate the routes from these attachments.

B.

Associate all the attachments with the existing transit gateway route table. Propagate the routes from these attachments.

C.

Associate the Direct Connect gateway attachment with the existing transit gateway route table. Propagate the Direct Connect gateway attachment to this route table.

D.

Change the security group inbound rules on the existing transit gateway network interfaces in the development VPC to allow connections to and from the on-premises CIDR range only.

E.

Create a new transit gateway route table. Associate the new route table with the development VPC attachment. Propagate the Direct Connect gateway and developmentVPC attachment to the new route table.

F.

Create a new transit gateway with default route table association and default route table propagation turned on. Attach the Direct Connect gateway and development VPC to the new transit gateway.

Full Access
Question # 8

A company’s network engineer needs to design a new solution to help troubleshoot and detect network anomalies. The network engineer has configured Traffic Mirroring. However, the mirrored traffic is overwhelming the Amazon EC2 instance that is the traffic mirror target. The EC2 instancehosts tools that the company’s security team uses to analyze the traffic. The network engineer needs to design a highly available solution that can scale to meet the demand of the mirrored traffic.

Which solution will meet these requirements?

A.

Deploy a Network Load Balancer (NLB) as the traffic mirror target. Behind the NLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

B.

Deploy an Application Load Balancer (ALB) as the traffic mirror target. Behind the ALB, deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during non-business hours.

C.

Deploy a Gateway Load Balancer (GLB) as the traffic mirror target. Behind the GLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

D.

Deploy an Application Load Balancer (ALB) with an HTTPS listener as the traffic mirror target. Behind the ALB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during active events or business hours.

Full Access
Go to page: