Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

ANS-C01 Exam Dumps - Amazon AWS Certified Advanced Networking - Specialty

Go to page:
Question # 65

A company's network engineer is designing an active-passive connection to AWS from two on-premises data centers. The company has set up AWS Direct Connect connections between the on-premises data centers and AWS. From each location, the company is using a transit VIF that connects to a Direct Connect gateway that is associated with a transit gateway.

The network engineer must ensure that traffic from AWS to the data centers is routed first to the primary data center. The traffic should be routed to the failover data center only in the case of an outage.

Which solution will meet these requirements?

A.

Set the BGP community tag for all prefixes from the primary data center to 7224:7100. Set the BGP community tag for all prefixes from the failover data center to 7224:7300

B.

Set the BGP community tag for all prefixes from the primary data center to 7224:7300. Set the BGP community tag for all prefixes from the failover data center to 7224:7100

C.

Set the BGP community tag for all prefixes from the primary data center to 7224:9300. Set the BGP community tag for all prefixes from the failover data center to 7224:9100

D.

Set the BGP community tag for all prefixes from the primary data center to 7224:9100. Set the BGP community tag for all prefixes from the failover data center to 7224:9300

Full Access
Question # 66

A company has a transit gateway in a single AWS account. The company sends flow logs for the transit gateway to an Amazon CloudWatch Logs log group.

The company created an AWS Lambda function to analyze the logs. The Lambda function sends a notification to an Amazon Simple Notification Service (Amazon SNS) topic when a VPC generates traffic that is dropped by the transit gateway. Each notification contains the account ID. VPC ID, and total amount of dropped packets.

The company wants to subscribe a new Lambda function to the SNS topic. The new Lambda function must automatically prevent the traffic that is identified in each notification from leaving a VPC by applying a network ACL to the transit gateway attachment subnets in the VPC that generates the traffic.

Which solution will meet these requirements?

A.

Configure the existing Lambda function to add the destination IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an outbound rule by using the destination IP addresses in the network ACL.

B.

Configure the existing Lambda function to add the source IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an inbound rule by using the source IP addresses in the network ACL.

C.

Configure the existing Lambda function to add the source IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an outbound rule by using the source IP addresses in the network ACL.

D.

Configure the existing Lambda function to add the destination IP addresses of the dropped traffic to each SNS notification. Configure the new Lambda function to create an inbound rule by using the destination IP addresses in the network ACL.

Full Access
Question # 67

A company has a data center in the us-west-1 Region with a 10 Gbps AWS Direct Connect dedicated connection to a Direct Connect gateway. There are two private VIFs from the same data center location in us-west-1 that are attached to the same Direct Connect gateway.

VIF 1 advertises 172.16.0.0/16 with an AS PATH attribute value of 65000. VIF 2 advertises 172.16.1.0/24 with an AS PATH attribute value of 65000 65000 65000.

How will AWS route traffic to the data center for traffic that has a destination address within the 172.16.1.0/24 network range?

A.

AWS will route all traffic by using VIF 1.

B.

AWS will route all traffic by using VIF 2.

C.

AWS will use both VIFs for routing by using a round-robin policy.

D.

AWS will use flow control to balance the traffic between the two VIFs.

Full Access
Question # 68

A security team is performing an audit of a company's AWS deployment. The security team is concerned that two applications might be accessing resources that should be blocked by network ACLs and security groups. The applications are deployed across two Amazon Elastic Kubernetes Service (Amazon EKS) clusters that use the Amazon VPC Container Network Interface (CNI) plugin for Kubernetes. The clusters are in separate subnets within the same VPC and have a Cluster Autoscaler configured.

The security team needs to determine which POD IP addresses are communicating with which services throughout the VPC. The security team wants to limit the number of flow logs and wants to examine the traffic from only the two applications.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create VPC flow logs in the default format. Create a filter to gather flow logs only from the EKS nodes. Include the srcaddr field and the dstaddr field in the flow logs.

B.

Create VPC flow logs in a custom format. Set the EKS nodes as the resource Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

C.

Create VPC flow logs in a custom format. Set the application subnets as resources. Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

D.

Create VPC flow logs in a custom format. Create a filter to gather flow logs only from the EKS nodes. Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

Full Access
Question # 69

A company’s network engineer builds and tests network designs for VPCs in a development account. The company needs to monitor the changes that are made to network resources and must ensure strict compliance with network security policies. The company also needs access to the historical configurations of network resources.

Which solution will meet these requirements?

A.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule with a custom pattern to monitor the account for changes. Configure the rule to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

B.

Create custom metrics from Amazon CloudWatch logs. Use the metrics to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

C.

Record the current state of network resources by using AWS Config. Create rules that reflect the desired configuration settings. Set remediation for noncompliant resources.

D.

Record the current state of network resources by using AWS Systems Manager Inventory. Use Systems Manager State Manager to enforce the desired configuration settings and to carry out remediation for noncompliant resources.

Full Access
Question # 70

A company deploys an internal website behind an Application Load Balancer (ALB) in a VPC. The VPC has a CIDR block of 172.31.0.0/16. The company creates a private hosted zone for the domain example.com for the website in Amazon Route 53. The company establishes an AWS Site-to-Site VPN connection between its office network and the VPC.

A network engineer needs to set up a DNS solution so that employees can visit the internal webpage by accessing a private domain URL (https://example.com) from the office network.

Which combination of steps will meet this requirement? (Choose two.)

A.

Create an alias record that points to the ALB in the Route 53 private hosted zone.

B.

Create a CNAME record that points to the ALB internal domain in the Route 53 private hosted zone.

C.

Create a Route 53 Resolver inbound endpoint. On the office DNS server, configure a conditional forwarder to forward the DNS queries to the Route 53 Resolver inbound endpoint.

D.

Create a Route 53 Resolver outbound endpoint. On the office DNS server, configure a conditional forwarder to forward the DNS queries to the Route 53 Resolver outbound endpoint.

E.

On the office DNS server, configure a conditional forwarder for the private domain to the VPC DNS at 172.31.0.2.

Full Access
Question # 71

An application team for a startup company is deploying a new multi-tier application into the AWS Cloud. The application will be hosted on a fleet of Amazon EC2 instances that run in an Auto Scaling group behind a publicly accessible Network Load Balancer (NLB). The application requires the clients to work with UDP traffic and TCP traffic.

In the near term, the application will serve only users within the same geographic location. The application team plans to extend the application to a global audience and will move the deployment to multiple AWS Regions around the world to bring the application closer to the end users. The application team wants to use the new Regions to deploy new versions of the application and wants to be able to control the amount of traffic that each Region receives during these rollouts. In addition, the application team must minimize first-byte latency and jitter (randomized delay) for the end users.

How should the application team design the network architecture for the application to meet these requirements?

A.

Create an Amazon CloudFront distribution to align to each Regional deployment. Set the NLB for each Region as the origin for each CloudFront distribution. Use an Amazon Route 53 weighted routing policy to control traffic to the newer Regional deployments.

B.

Create an AWS Global Accelerator accelerator and listeners for the required ports. Configure endpoint groups for each Region. Configure a traffic dial for the endpoint groups to control traffic to the newer Regional deployments. Register the NLBs with the endpoint groups.

C.

Use Amazon S3 Transfer Acceleration for the application in each Region. Adjust the amount of traffic that each Region receives from the Transfer Acceleration endpoints to the Regional NLBs.

D.

Create an Amazon CloudFront distribution that includes an origin group. Set the NLB for each Region as the origins for the origin group. Use an Amazon Route 53 latency routing policy to control traffic to the new Regional deployments.

Full Access
Question # 72

A company hosts a highly available, scalable, and resilient application on Amazon EC2 instances that are part of an Auto Scaling group. A network engineer is planning to integrate IPv6 support with the application deployment in phases. The first phase is to enable IPv6 service consumption on the public Network Load Balancers (NLBs) that are deployed across the infrastructure. The target groups for the NLBS are configured as the Auto Scaling groups of the EC2 instances that host the application. The NLBs are configured for dual-stack operation.

During the testing of the first phase, the IPv6 application queries are not reaching the backend servers.

What is the cause of this issue?

A.

The subnets where the EC2 instances are deployed do not have IPv6 addresses configured.

B.

The route tables for the NLB subnets do not have IPV6 routing configured.

C.

The route tables for the EC2 subnets do not have IPV6 routing configured.

D.

The security groups that are associated with the NLBs do not allow IPv6 traffic.

Full Access
Go to page: