Searching for workable clues to ace the Amazon Web Services AIP-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s AIP-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps
A company has a recommendation system. The system's applications run on Amazon EC2 instances. The applications make API calls to Amazon Bedrock foundation models (FMs) to analyze customer behavior and generate personalized product recommendations.
The system is experiencing intermittent issues. Some recommendations do not match customer preferences. The company needs an observability solution to monitor operational metrics and detect patterns of operational performance degradation compared to established baselines. The solution must also generate alerts with correlation data within 10 minutes when FM behavior deviates from expected patterns.
Which solution will meet these requirements?
A GenAI developer is evaluating Amazon Bedrock foundation models (FMs) to enhance a Europe-based company's internal business application. The company has a multi-account landing zone in AWS Control Tower. The company uses Service Control Policies (SCPs) to allow its accounts to use only the eu-north-1 and eu-west-1 Regions. All customer data must remain in private networks within the approved AWS Regions.
The GenAI developer selects an FM based on analysis and testing and hosts the model in the eu-central-1 Region and the eu-west-3 Region. The GenAI developer must enable access to the FM for the company's employees. The GenAI developer must ensure that requests to the FM are private and remain within the same Regions as the FM.
Which solution will meet these requirements?
A financial services company is developing a Retrieval Augmented Generation (RAG) application to help investment analysts query complex financial relationships across multiple investment vehicles, market sectors, and regulatory environments. The dataset contains highly interconnected entities that have multi-hop relationships. Analysts must examine relationships holistically to provide accurate investment guidance. The application must deliver comprehensive answers that capture indirect relationships between financial entities and must respond in less than 3 seconds.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building an AI advisory application by using Amazon Bedrock. The application will provide recommendations to customers. The company needs the application to explain its reasoning process and cite specific sources for data. The application must retrieve information from company data sources and show step-by-step reasoning for recommendations. The application must also link data claims to source documents and maintain response latency under 3 seconds.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building a generative AI (GenAI) application that processes financial reports and provides summaries for analysts. The application must run two compute environments. In one environment, AWS Lambda functions must use the Python SDK to analyze reports on demand. In the second environment, Amazon EKS containers must use the JavaScript SDK to batch process multiple reports on a schedule. The application must maintain conversational context throughout multi-turn interactions, use the same foundation model (FM) across environments, and ensure consistent authentication.
Which solution will meet these requirements?
A company runs a Retrieval Augmented Generation (RAG) application that uses Amazon Bedrock Knowledge Bases to perform regulatory compliance queries. The application uses the RetrieveAndGenerateStream API. The application retrieves relevant documents from a knowledge base that contains more than 50,000 regulatory documents, legal precedents, and policy updates.
The RAG application is producing suboptimal responses because the initial retrieval often returns semantically similar but contextually irrelevant documents. The poor responses are causing model hallucinations and incorrect regulatory guidance. The company needs to improve the performance of the RAG application so it returns more relevant documents.
Which solution will meet this requirement with the LEAST operational overhead?
A company developed a multimodal content analysis application by using Amazon Bedrock. The application routes different content types (text, images, and code) to specialized foundation models (FMs).
The application needs to handle multiple types of routing decisions. Simple routing based on file extension must have minimal latency. Complex routing based on content semantics requires analysis before FM selection. The application must provide detailed history and support fallback options when primary FMs fail.
Which solution will meet these requirements?
A financial services company is building a customer support application that retrieves relevant financial regulation documents from a database based on semantic similarity to user queries. The application must integrate with Amazon Bedrock to generate responses. The application must search documents in English, Spanish, and Portuguese. The application must filter documents by metadata such as publication date, regulatory agency, and document type.
The database stores approximately 10 million document embeddings. To minimize operational overhead, the company wants a solution that minimizes management and maintenance effort while providing low-latency responses for real-time customer interactions.
Which solution will meet these requirements?