Spring Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

AIP-C01 Exam Dumps - AWS Certified Generative AI Developer - Professional

Searching for workable clues to ace the Amazon Web Services AIP-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s AIP-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 17

A company has a recommendation system. The system's applications run on Amazon EC2 instances. The applications make API calls to Amazon Bedrock foundation models (FMs) to analyze customer behavior and generate personalized product recommendations.

The system is experiencing intermittent issues. Some recommendations do not match customer preferences. The company needs an observability solution to monitor operational metrics and detect patterns of operational performance degradation compared to established baselines. The solution must also generate alerts with correlation data within 10 minutes when FM behavior deviates from expected patterns.

Which solution will meet these requirements?

A.

Configure Amazon CloudWatch Container Insights for the application infrastructure. Set up CloudWatch alarms for latency thresholds. Add custom metrics for token counts by using the CloudWatch embedded metric format. Create CloudWatch dashboards to visualize the data.

B.

Implement AWS X-Ray to trace requests through the application components. Enable CloudWatch Logs Insights for error pattern detection. Set up AWS CloudTrail to monitor all API calls to Amazon Bedrock. Create custom dashboards in Amazon QuickSight.

C.

Enable Amazon CloudWatch Application Insights for the application resources. Create custom metrics for recommendation quality, token usage, and response latency by using the CloudWatch embedded metric format with dimensions for request types and user segments. Configure CloudWatch anomaly detection on the model metrics. Establish log pattern analysis by using CloudWatch Logs Insights.

D.

Use Amazon OpenSearch Service with the Observability plugin. Ingest model metrics and logs by using Amazon Kinesis. Create custom Piped Processing Language (PPL) queries to analyze model behavior patterns. Establish operational dashboards to visualize anomalies in real time.

Full Access
Question # 18

A GenAI developer is evaluating Amazon Bedrock foundation models (FMs) to enhance a Europe-based company's internal business application. The company has a multi-account landing zone in AWS Control Tower. The company uses Service Control Policies (SCPs) to allow its accounts to use only the eu-north-1 and eu-west-1 Regions. All customer data must remain in private networks within the approved AWS Regions.

The GenAI developer selects an FM based on analysis and testing and hosts the model in the eu-central-1 Region and the eu-west-3 Region. The GenAI developer must enable access to the FM for the company's employees. The GenAI developer must ensure that requests to the FM are private and remain within the same Regions as the FM.

Which solution will meet these requirements?

A.

Deploy an AWS Lambda function that is exposed by a private Amazon API Gateway REST API to a VPC in eu-north-1. Create a VPC endpoint for the selected FM in eu-central-1 and eu-west-3. Extend existing SCPs to allow employees to use the FM. Integrate the REST API with the business application.

B.

Deploy the FM on Amazon EC2 instances in eu-north-1. Deploy a private Amazon API Gateway REST API in front of the EC2 instances. Configure an Amazon Bedrock VPC endpoint. Integrate the REST API with the business application.

C.

Configure the FM to use cross-Region inference through a Europe-scoped endpoint. Configure an Amazon Bedrock VPC endpoint. Extend existing SCPs to allow employees to use the FM through inference profiles in Europe-based Regions where the FM is available. Use an inference profile to integrate Amazon Bedrock with the business application.

D.

Deploy the FM in Amazon SageMaker in eu-north-1. Configure a SageMaker VPC endpoint. Extend existing SCPs to allow employees to use the SageMaker endpoint. Integrate the FM in SageMaker with the business application.

Full Access
Question # 19

A financial services company is developing a Retrieval Augmented Generation (RAG) application to help investment analysts query complex financial relationships across multiple investment vehicles, market sectors, and regulatory environments. The dataset contains highly interconnected entities that have multi-hop relationships. Analysts must examine relationships holistically to provide accurate investment guidance. The application must deliver comprehensive answers that capture indirect relationships between financial entities and must respond in less than 3 seconds.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Bedrock Knowledge Bases with GraphRAG and Amazon Neptune Analytics to store financial data. Analyze multi-hop relationships between entities and automatically identify related information across documents.

B.

Use Amazon Bedrock Knowledge Bases and an Amazon OpenSearch Service vector store to implement custom relationship identification logic that uses AWS Lambda to query multiple vector embeddings in sequence.

C.

Use Amazon OpenSearch Serverless vector search with k-nearest neighbor (k-NN). Implement manual relationship mapping in an application layer that runs on Amazon EC2 Auto Scaling.

D.

Use Amazon DynamoDB to store financial data in a custom indexing system. Use AWS Lambda to query relevant records. Use Amazon SageMaker to generate responses.

Full Access
Question # 20

A company is building an AI advisory application by using Amazon Bedrock. The application will provide recommendations to customers. The company needs the application to explain its reasoning process and cite specific sources for data. The application must retrieve information from company data sources and show step-by-step reasoning for recommendations. The application must also link data claims to source documents and maintain response latency under 3 seconds.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Bedrock Knowledge Bases with source attribution enabled. Use the Anthropic Claude Messages API with RAG to set high-relevance thresholds for source documents. Store reasoning and citations in Amazon S3 for auditing purposes.

B.

Use Amazon Bedrock with Anthropic Claude models and extended thinking. Configure a 4,000-token thinking budget. Store reasoning traces and citations in Amazon DynamoDB for auditing purposes.

C.

Configure Amazon SageMaker AI with a custom Anthropic Claude model. Use the model’s reasoning parameter and AWS Lambda to process responses. Add source citations from a separate Amazon RDS database.

D.

Use Amazon Bedrock with Anthropic Claude models and chain-of-thought reasoning. Configure custom retrieval tracking with the Amazon Bedrock Knowledge Bases API. Use Amazon CloudWatch to monitor response latency metrics.

Full Access
Question # 21

A company is building a generative AI (GenAI) application that processes financial reports and provides summaries for analysts. The application must run two compute environments. In one environment, AWS Lambda functions must use the Python SDK to analyze reports on demand. In the second environment, Amazon EKS containers must use the JavaScript SDK to batch process multiple reports on a schedule. The application must maintain conversational context throughout multi-turn interactions, use the same foundation model (FM) across environments, and ensure consistent authentication.

Which solution will meet these requirements?

A.

Use the Amazon Bedrock InvokeModel API with a separate authentication method for each environment. Store conversation states in Amazon DynamoDB. Use custom I/O formatting logic for each programming language.

B.

Use the Amazon Bedrock Converse API directly in both environments with a common authentication mechanism that uses IAM roles. Store conversation states in Amazon ElastiCache. Create programming language-specific wrappers for model parameters.

C.

Create a centralized Amazon API Gateway REST API endpoint that handles all model interactions by using the InvokeModel API. Store interaction history in application process memory in each Lambda function or EKS container. Use environment variables to configure model parameters.

D.

Use the Amazon Bedrock Converse API and IAM roles for authentication. Pass previous messages in the request messages array to maintain conversational context. Use programming language-specific SDKs to establish consistent API interfaces.

Full Access
Question # 22

A company runs a Retrieval Augmented Generation (RAG) application that uses Amazon Bedrock Knowledge Bases to perform regulatory compliance queries. The application uses the RetrieveAndGenerateStream API. The application retrieves relevant documents from a knowledge base that contains more than 50,000 regulatory documents, legal precedents, and policy updates.

The RAG application is producing suboptimal responses because the initial retrieval often returns semantically similar but contextually irrelevant documents. The poor responses are causing model hallucinations and incorrect regulatory guidance. The company needs to improve the performance of the RAG application so it returns more relevant documents.

Which solution will meet this requirement with the LEAST operational overhead?

A.

Deploy an Amazon SageMaker endpoint to run a fine-tuned ranking model. Use an Amazon API Gateway REST API to route requests. Configure the application to make requests through the REST API to rerank the results.

B.

Use Amazon Comprehend to classify documents and apply relevance scores. Integrate the RAG application’s reranking process with Amazon Textract to run document analysis. Use Amazon Neptune to perform graph-based relevance calculations.

C.

Implement a retrieval pipeline that uses the Amazon Bedrock Knowledge Bases Retrieve API to perform initial document retrieval. Call the Amazon Bedrock Rerank API to rerank the results. Invoke the InvokeModelWithResponseStream operation to generate responses.

D.

Use the latest Amazon reranker model through the reranking configuration within Amazon Bedrock Knowledge Bases. Use the model to improve document relevance scoring and to reorder results based on contextual assessments.

Full Access
Question # 23

A company developed a multimodal content analysis application by using Amazon Bedrock. The application routes different content types (text, images, and code) to specialized foundation models (FMs).

The application needs to handle multiple types of routing decisions. Simple routing based on file extension must have minimal latency. Complex routing based on content semantics requires analysis before FM selection. The application must provide detailed history and support fallback options when primary FMs fail.

Which solution will meet these requirements?

A.

Configure AWS Lambda functions that call Amazon Bedrock FMs for all routing logic. Use conditional statements to determine the appropriate FM based on content type and semantics.

B.

Create a hybrid solution. Handle simple routing based on file extensions in application code. Handle complex content-based routing by using an AWS Step Functions state machine with JSONata for content analysis and the InvokeModel API for specialized FMs.

C.

Deploy separate AWS Step Functions workflows for each content type with routing logic in AWS Lambda functions. Use Amazon EventBridge to coordinate between workflows when fallback to alternate FMs is required.

D.

Use Amazon SQS with different SQS queues for each content type. Configure AWS Lambda consumers that analyze content and invoke appropriate FMs based on message attributes by using Amazon Bedrock with an AWS SDK.

Full Access
Question # 24

A financial services company is building a customer support application that retrieves relevant financial regulation documents from a database based on semantic similarity to user queries. The application must integrate with Amazon Bedrock to generate responses. The application must search documents in English, Spanish, and Portuguese. The application must filter documents by metadata such as publication date, regulatory agency, and document type.

The database stores approximately 10 million document embeddings. To minimize operational overhead, the company wants a solution that minimizes management and maintenance effort while providing low-latency responses for real-time customer interactions.

Which solution will meet these requirements?

A.

Use Amazon OpenSearch Serverless to provide vector search capabilities and metadata filtering. Integrate with Amazon Bedrock Knowledge Bases to enable Retrieval Augmented Generation (RAG) using an Anthropic Claude foundation model.

B.

Deploy an Amazon Aurora PostgreSQL database with the pgvector extension. Store embeddings and metadata in tables. Use SQL queries for similarity search and send results to Amazon Bedrock for response generation.

C.

Use Amazon S3 Vectors to configure a vector index and non-filterable metadata fields. Integrate S3 Vectors with Amazon Bedrock for RAG.

D.

Set up an Amazon Neptune Analytics database with a vector index. Use graph-based retrieval and Amazon Bedrock for response generation.

Full Access
Go to page: