Spring Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

AIP-C01 Exam Dumps - AWS Certified Generative AI Developer - Professional

Searching for workable clues to ace the Amazon Web Services AIP-C01 Exam? You’re on the right place! ExamCert has realistic, trusted and authentic exam prep tools to help you achieve your desired credential. ExamCert’s AIP-C01 PDF Study Guide, Testing Engine and Exam Dumps follow a reliable exam preparation strategy, providing you the most relevant and updated study material that is crafted in an easy to learn format of questions and answers. ExamCert’s study tools aim at simplifying all complex and confusing concepts of the exam and introduce you to the real exam scenario and practice it with the help of its testing engine and real exam dumps

Go to page:
Question # 9

A company is creating a generative AI (GenAI) application that uses Amazon Bedrock foundation models (FMs). The application must use Microsoft Entra ID to authenticate. All FM API calls must stay on private network paths. Access to the application must be limited by department to specific model families. The company also needs a comprehensive audit trail of model interactions.

Which solution will meet these requirements?

A.

Configure SAML federation between Microsoft Entra ID and AWS Identity and Access Management. Create department-specific IAM roles that allow only the required ModelId values. Create AWS PrivateLink interface VPC endpoints for Amazon Bedrock runtime services. Enable AWS CloudTrail to capture Amazon Bedrock API calls. Configure Amazon Bedrock model invocation logging to record detailed model interactions.

B.

Create an identity provider (IdP) connection in IAM to authenticate by using Microsoft Entra ID. Assign department permission sets to control access to specific model families. Deploy AWS Lambda functions in private subnets with a NAT gateway for egress to Amazon Bedrock public endpoints. Enable CloudWatch Logs to capture model interactions for auditing purposes.

C.

Create a SAML identity provider (IdP) in IAM to authenticate by using Microsoft Entra ID. Use IAM permissions boundaries to limit department roles' access to specific model families. Configure public Amazon Bedrock API endpoints with VPC routing to maintain private network connectivity. Set up CloudTrail with Amazon S3 Lifecycle rules to manage audit logs of model interactions.

D.

Configure OpenID Connect (OIDC) federation between Microsoft Entra ID and IAM. Use attribute-based access control to map department attributes to specific model access permissions. Apply SCP policies to restrict access to Amazon Bedrock FM families based on department. Use Microsoft Entra ID's built-in logging capabilities to maintain an audit trail of model interactions.

Full Access
Question # 10

A wildlife conservation agency operates zoos globally. The agency uses various sensors, trackers, and audiovisual recorders to monitor animal behavior. The agency wants to launch a generative AI (GenAI) assistant that can ingest multimodal data to study animal behavior.

The GenAI assistant must support natural language queries, avoid speculative behavioral interpretations, and maintain audit logs for ethical research audits.

Which solution will meet these requirements?

A.

Ingest raw videos into Amazon Rekognition to detect animal postures and expressions. Use Amazon Data Firehose to stream sensor and GPS data into Amazon S3. Prompt an Amazon Bedrock FM using basic templates stored in AWS Systems Manager Parameter Store. Use IAM for access control. Use AWS CloudTrail for audit logging.

B.

Use Amazon SageMaker Processing and Amazon Transcribe to pre-process multimodal data. Ingest curated summaries into an Amazon Bedrock Knowledge Bases. Apply Amazon Bedrock guardrails to restrict speculative outputs. Use AWS AppConfig to manage prompt templates. Use AWS CloudTrail to log research activity for audits.

C.

Use Amazon OpenSearch Serverless to index behavioral logs and telemetry. Use Amazon Comprehend to extract entities. Use Amazon Bedrock to answer questions over indexed data. Use IAM for access control and CloudTrail for audit logging.

D.

Configure Amazon O Business to federate data across Amazon S3, Amazon Kinesis, and Amazon SageMaker Feature Store. Use EventBridge for ingestion orchestration. Use custom AWS Lambda functions to filter LLM outputs for ethical compliance.

Full Access
Question # 11

A company uses Amazon Bedrock to implement a Retrieval Augmented Generation (RAG)-based system to serve medical information to users. The company needs to compare multiple chunking strategies, evaluate the generation quality of two foundation models (FMs), and enforce quality thresholds for deployment.

Which Amazon Bedrock evaluation configuration will meet these requirements?

A.

Create a retrieve-only evaluation job that uses a supported version of Anthropic Claude Sonnet as the evaluator model. Configure metrics for context relevance and context coverage. Define deployment thresholds in a separate CI/CD pipeline.

B.

Create a retrieve-and-generate evaluation job that uses custom precision-at-k metrics and an LLM-as-a-judge metric with a scale of 1–5. Include each chunking strategy in the evaluation dataset. Use a supported version of Anthropic Claude Sonnet to evaluate responses from both FMs.

C.

Create a separate evaluation job for each chunking strategy and FM combination. Use Amazon Bedrock built-in metrics for correctness and completeness. Manually review scores before deployment approval.

D.

Set up a pipeline that uses multiple retrieve-only evaluation jobs to assess retrieval quality. Create separate evaluation jobs for both FMs that use Amazon Nova Pro as the LLM-as-a-judge model. Evaluate based on faithfulness and citation precision metrics.

Full Access
Question # 12

A publishing company is developing a chat assistant that uses a containerized large language model (LLM) that runs on Amazon SageMaker AI. The architecture consists of an Amazon API Gateway REST API that routes user requests to an AWS Lambda function. The Lambda function invokes a SageMaker AI real-time endpoint that hosts the LLM.

Users report uneven response times. Analytics show that a high number of chats are abandoned after 2 seconds of waiting for the first token. The company wants a solution to ensure that p95 latency is under 800 ms for interactive requests to the chat assistant.

Which combination of solutions will meet this requirement? (Select TWO.)

A.

Enable model preload upon container startup. Implement dynamic batching to process multiple user requests together in a single inference pass.

B.

Select a larger GPU instance type for the SageMaker AI endpoint. Set the minimum number of instances to 0. Continue to perform per-request processing. Lazily load model weights on the first request.

C.

Switch to a multi-model endpoint. Use lazy loading without request batching.

D.

Set the minimum number of instances to greater than 0. Enable response streaming.

E.

Switch to Amazon SageMaker Asynchronous Inference for all requests. Store requests in an Amazon S3 bucket. Set the minimum number of instances to 0.

Full Access
Question # 13

A company is planning to deploy multiple generative AI (GenAI) applications to five independent business units that operate in multiple countries in Europe and the Americas. Each application uses Amazon Bedrock Retrieval Augmented Generation (RAG) patterns with business unit-specific knowledge bases that store terabytes of unstructured data.

The company must establish well-architected, standardized components for security controls, observability practices, and deployment patterns across all the GenAI applications. The components must be reusable, versioned, and governed consistently.

Which solution will meet these requirements?

A.

Configure Amazon API Gateway REST API endpoints for the GenAI applications. Deploy common security, observability, and RAG patterns based on the AWS Well-Architected Generative AI Lens in standardized AWS CloudFormation templates. Use CloudFormation Guard after deployment to validate policy compliance in each business unit.

B.

Create standardized AWS CloudFormation templates to implement security, observability, and RAG patterns based on the AWS Well-Architected Generative AI Lens. Establish a centralized repository for version control. Integrate a CI/CD pipeline with CloudFormation Guard to enforce consistent and repeatable deployments across business units.

C.

Use AWS Service Catalog to define standardized portfolios and versioned products for each business unit. Use the portfolios to enforce security, observability, and RAG patterns based on the AWS Well-Architected Generative AI Lens. Require business units to use the Service Catalog console to deploy resources.

D.

Document security controls, observability requirements, and RAG patterns based on the AWS Well-Architected Generative AI Lens in a shared design document. Use Amazon Macie to enforce deployment. Delegate implementation responsibility to each business unit.

Full Access
Question # 14

An ecommerce company is developing a generative AI application that uses Amazon Bedrock with Anthropic Claude to recommend products to customers. Customers report that some recommended products are not available for sale on the website or are not relevant to the customer. Customers also report that the solution takes a long time to generate some recommendations.

The company investigates the issues and finds that most interactions between customers and the product recommendation solution are unique. The company confirms that the solution recommends products that are not in the company’s product catalog. The company must resolve these issues.

Which solution will meet this requirement?

A.

Increase grounding within Amazon Bedrock Guardrails. Enable Automated Reasoning checks. Set up provisioned throughput.

B.

Use prompt engineering to restrict the model responses to relevant products. Use streaming techniques such as the InvokeModelWithResponseStream action to reduce perceived latency for the customers.

C.

Create an Amazon Bedrock knowledge base. Implement Retrieval Augmented Generation RAG. Set the PerformanceConfigLatency parameter to optimized.

D.

Store product catalog data in Amazon OpenSearch Service. Validate the model’s product recommendations against the product catalog. Use Amazon DynamoDB to implement response caching.

Full Access
Question # 15

A company uses Amazon Bedrock to generate technical content for customers. The company has recently experienced a surge in hallucinated outputs when the company’s model generates summaries of long technical documents. The model outputs include inaccurate or fabricated details. The company’s current solution uses a large foundation model (FM) with a basic one-shot prompt that includes the full document in a single input.

The company needs a solution that will reduce hallucinations and meet factual accuracy goals. The solution must process more than 1,000 documents each hour and deliver summaries within 3 seconds for each document.

Which combination of solutions will meet these requirements? (Select TWO.)

A.

Implement zero-shot chain-of-thought (CoT) instructions that require step-by-step reasoning with explicit fact verification before the model generates each summary.

B.

Use Retrieval Augmented Generation (RAG) with an Amazon Bedrock knowledge base. Apply semantic chunking and tuned embeddings to ground summaries in source content.

C.

Configure Amazon Bedrock guardrails to block any generated output that matches patterns that are associated with hallucinated content.

D.

Increase the temperature parameter in Amazon Bedrock.

E.

Prompt the Amazon Bedrock model to summarize each full document in one pass.

Full Access
Question # 16

A company uses AWS Lambda functions to build an AI agent solution. A GenAI developer must set up a Model Context Protocol (MCP) server that accesses user information. The GenAI developer must also configure the AI agent to use the new MCP server. The GenAI developer must ensure that only authorized users can access the MCP server.

Which solution will meet these requirements?

A.

Use a Lambda function to host the MCP server. Grant the AI agent Lambda functions permission to invoke the Lambda function that hosts the MCP server. Configure the AI agent’s MCP client to invoke the MCP server asynchronously.

B.

Use a Lambda function to host the MCP server. Grant the AI agent Lambda functions permission to invoke the Lambda function that hosts the MCP server. Configure the AI agent to use the STDIO transport with the MCP server.

C.

Use a Lambda function to host the MCP server. Create an Amazon API Gateway HTTP API that proxies requests to the Lambda function. Configure the AI agent solution to use the Streamable HTTP transport to make requests through the HTTP API. Use Amazon Cognito to enforce OAuth 2.1.

D.

Use a Lambda layer to host the MCP server. Add the Lambda layer to the AI agent Lambda functions. Configure the agentic AI solution to use the STDIO transport to send requests to the MCP server. In the AI agent’s MCP configuration, specify the Lambda layer ARN as the command. Specify the user credentials as environment variables.

Full Access
Go to page: