Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: v4s65

AIF-C01 Exam Dumps - AWS Certified AI Practitioner Exam

Go to page:
Question # 25

HOTSPOT

A company is training its employees on how to structure prompts for foundation models.

Select the correct prompt engineering technique from the following list for each prompt template. Each prompt engineering technique should be selected onetime. (SelectTHREE.)

• Chain-of-thought reasoning

• Few-shot learning

• Zero-shot learning

Full Access
Question # 26

A company has a foundation model (FM) that was customized by using Amazon Bedrock to answer customer queries about products. The company wants to validate the model's responses to new types of queries. The company needs to upload a new dataset that Amazon Bedrock can use for validation.

Which AWS service meets these requirements?

A.

Amazon S3

B.

Amazon Elastic Block Store (Amazon EBS)

C.

Amazon Elastic File System (Amazon EFS)

D.

AWS Snowcone

Full Access
Question # 27

An AI practitioner is building a model to generate images of humans in various professions. The AI practitioner discovered that the input data is biased and that specific attributes affect the image generation and create bias in the model.

Which technique will solve the problem?

A.

Data augmentation for imbalanced classes

B.

Model monitoring for class distribution

C.

Retrieval Augmented Generation (RAG)

D.

Watermark detection for images

Full Access
Question # 28

A company is building a solution to generate images for protective eyewear. The solution must have high accuracy and must minimize the risk of incorrect annotations.

Which solution will meet these requirements?

A.

Human-in-the-loop validation by using Amazon SageMaker Ground Truth Plus

B.

Data augmentation by using an Amazon Bedrock knowledge base

C.

Image recognition by using Amazon Rekognition

D.

Data summarization by using Amazon QuickSight

Full Access
Question # 29

A pharmaceutical company wants to analyze user reviews of new medications and provide a concise overview for each medication. Which solution meets these requirements?

A.

Create a time-series forecasting model to analyze the medication reviews by using Amazon Personalize.

B.

Create medication review summaries by using Amazon Bedrock large language models (LLMs).

C.

Create a classification model that categorizes medications into different groups by using Amazon SageMaker.

D.

Create medication review summaries by using Amazon Rekognition.

Full Access
Question # 30

A company is implementing intelligent agents to provide conversational search experiences for its customers. The company needs a database service that will support storage and queries of embeddings from a generative AI model as vectors in the database.

Which AWS service will meet these requirements?

A.

Amazon Athena

B.

Amazon Aurora PostgreSQL

C.

Amazon Redshift

D.

Amazon EMR

Full Access
Question # 31

A medical company wants to develop an AI application that can access structured patient records, extract relevant information, and generate concise summaries.

Which solution will meet these requirements?

A.

Use Amazon Comprehend Medical to extract relevant medical entities and relationships. Apply rule-based logic to structure and format summaries.

B.

Use Amazon Personalize to analyze patient engagement patterns. Integrate the output with a general purpose text summarization tool.

C.

Use Amazon Textract to convert scanned documents into digital text. Design a keyword extraction system to generate summaries.

D.

Implement Amazon Kendra to provide a searchable index for medical records. Use a template-based system to format summaries.

Full Access
Question # 32

A research company implemented a chatbot by using a foundation model (FM) from Amazon Bedrock. The chatbot searches for answers to questions from a large database of research papers.

After multiple prompt engineering attempts, the company notices that the FM is performing poorly because of the complex scientific terms in the research papers.

How can the company improve the performance of the chatbot?

A.

Use few-shot prompting to define how the FM can answer the questions.

B.

Use domain adaptation fine-tuning to adapt the FM to complex scientific terms.

C.

Change the FM inference parameters.

D.

Clean the research paper data to remove complex scientific terms.

Full Access
Go to page: